尽管当代的大语言模型(LMS)表现出令人印象深刻的提问功能,但它们的答案通常是单个呼吁模型的产物。这需要不受欢迎的不透明度和损害性能,尤其是在本质上是多步骤的问题上。为了解决这些局限性,我们可以通过一个过程通过因果结构反映了问题的基本逻辑结构的过程来展示如何制作LMS来执行忠实的多步推理。我们的方法是通过将推理步骤链接在一起的,每个步骤都来自调用两个微调的LMS,一个用于选择,一种用于推理,以产生有效的推理跟踪。我们的方法在推理轨迹的空间中进行了光束搜索,以提高推理质量。我们证明了模型对多步逻辑推论和科学提问的有效性,表明它在最终答案的准确性上优于基准,并生成可解释的人类解释的推理痕迹,其有效性可以由用户检查。
translated by 谷歌翻译
抽象推理是智能系统的关键能力。大型语言模型在抽象推理任务上实现了高度的性能,但表现出许多缺陷。但是,人类的抽象推理也是不完美的,并且取决于我们对推理问题内容的知识和信念。例如,人类对在日常情况下基于逻辑规则的逻辑规则比关于抽象属性的任意规则更可靠地理解。语言模型的培训经验类似地赋予了他们先前的期望,这些期望反映了人类的知识和信念。因此,我们假设语言模型会显示出类似人类的内容对抽象推理问题的影响。我们在三个逻辑推理任务中探讨了这一假设:自然语言推论,判断三段论的逻辑有效性和ison选择任务(Wason,1968)。我们发现,最新的大语言模型(具有7或700亿个参数; Hoffman等,2022)反映了这些任务中人类在人类中观察到的许多相同模式 - 像人类一样,模型对可信情况的理由更有效地理由不现实或抽象的。我们的发现对理解这些认知效应以及有助于语言模型表现的因素具有影响。
translated by 谷歌翻译
为了帮助代理在其构建块方面的场景的原因,我们希望提取任何给定场景的组成结构(特别是包括场景的对象的配置和特征)。当需要推断出现在代理的位置/观点的同时需要推断场景结构时,这个问题特别困难,因为两个变量共同引起代理人的观察。我们提出了一个无监督的变分方法来解决这个问题。利用不同场景存在的共享结构,我们的模型学会从RGB视频输入推断出两组潜在表示:一组“对象”潜伏,对应于场景的时间不变,对象级内容,如以及一组“帧”潜伏,对应于全局时变元素,例如视点。这种潜水所的分解允许我们的模型Simone,以单独的方式表示对象属性,其不依赖于视点。此外,它允许我们解解对象动态,并将其轨迹总结为时间抽象的,查看 - 不变,每个对象属性。我们在三个程序生成的视频数据集中展示了这些功能,以及在查看合成和实例分段方面的模型的性能。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
We consider distributed learning in the presence of slow and unresponsive worker nodes, referred to as stragglers. In order to mitigate the effect of stragglers, gradient coding redundantly assigns partial computations to the worker such that the overall result can be recovered from only the non-straggling workers. Gradient codes are designed to tolerate a fixed number of stragglers. Since the number of stragglers in practice is random and unknown a priori, tolerating a fixed number of stragglers can yield a sub-optimal computation load and can result in higher latency. We propose a gradient coding scheme that can tolerate a flexible number of stragglers by carefully concatenating gradient codes for different straggler tolerance. By proper task scheduling and small additional signaling, our scheme adapts the computation load of the workers to the actual number of stragglers. We analyze the latency of our proposed scheme and show that it has a significantly lower latency than gradient codes.
translated by 谷歌翻译
Over-the-air computation has the potential to increase the communication-efficiency of data-dependent distributed wireless systems, but is vulnerable to eavesdropping. We consider over-the-air computation over block-fading additive white Gaussian noise channels in the presence of a passive eavesdropper. The goal is to design a secure over-the-air computation scheme. We propose a scheme that achieves MSE-security against the eavesdropper by employing zero-forced artificial noise, while keeping the distortion at the legitimate receiver small. In contrast to former approaches, the security does not depend on external helper nodes to jam the eavesdropper's receive signal. We thoroughly design the system parameters of the scheme, propose an artificial noise design that harnesses unused transmit power for security, and give an explicit construction rule. Our design approach is applicable both if the eavesdropper's channel coefficients are known and if they are unknown in the signal design. Simulations demonstrate the performance, and show that our noise design outperforms other methods.
translated by 谷歌翻译
Current state-of-the-art deep neural networks for image classification are made up of 10 - 100 million learnable weights and are therefore inherently prone to overfitting. The complexity of the weight count can be seen as a function of the number of channels, the spatial extent of the input and the number of layers of the network. Due to the use of convolutional layers the scaling of weight complexity is usually linear with regards to the resolution dimensions, but remains quadratic with respect to the number of channels. Active research in recent years in terms of using multigrid inspired ideas in deep neural networks have shown that on one hand a significant number of weights can be saved by appropriate weight sharing and on the other that a hierarchical structure in the channel dimension can improve the weight complexity to linear. In this work, we combine these multigrid ideas to introduce a joint framework of multigrid inspired architectures, that exploit multigrid structures in all relevant dimensions to achieve linear weight complexity scaling and drastically reduced weight counts. Our experiments show that this structured reduction in weight count is able to reduce overfitting and thus shows improved performance over state-of-the-art ResNet architectures on typical image classification benchmarks at lower network complexity.
translated by 谷歌翻译
Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
translated by 谷歌翻译
我们研究了欧洲排放津贴(EUA)的价格,从而分析了它们对相关能源市场的不确定性和依赖性。我们提出了一个概率的多元条件时间序列模型,该模型利用数据的关键特征。在广泛的滚动窗口预测研究中评估了提议模型和各种竞争模型的预测性能,涵盖了将近两年的样本外。因此,我们预测了30步。多元概率预测的准确性由能量评分评估。鉴于俄罗斯对乌克兰的入侵,我们还讨论了着重于波动性溢出和随时间变化的相关性的发现。
translated by 谷歌翻译